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Abstract

Text-to-image diffusion models demonstrate remarkable generative capabilities
but pose risks in creating Not Safe For Work (NSFW) content, particularly from
adversarial prompts that bypass standard filters. Existing defenses often struggle
with robustness. This paper investigates and extends the Distorting Embedding
Space (DES) framework by Ahn and Jung (1), a text-encoder–based defense that
warps unsafe embeddings into safe regions. Our reimplementation of the original
DES baseline achieves an Attack Success Rate (ASR) of 0.31, a Fréchet Inception
Distance (FID) of 21.86, and a CLIP Score of 28.52 against adversarial prompts. We
then implement five loss-term extensions—push-based repulsion (Lpush, Lpushharm),
Multi-Concept Neutralization (LMCN), Orthogonality Constraint (Lortho), Margin-
Based Formulation (Lmargins), and Distribution Matching (LMMD)—and observe
clear trade-offs between safety and quality. Notably, combining LMMD with
Lpushharm yields the best overall balance, achieving FID 16.98 (vs. 21.86), CLIP
30.60 (vs. 28.52), and ASR 0.33% (vs. 0.31%). Our result beats the original
DES baseline in both image fidelity and semantic alignment while maintaining
comparable safety.

1 Motivation
The prevention of inappropriate content generation in text-to-image diffusion models represents a crit-
ical challenge as these AI technologies become increasingly integrated into mainstream applications.
This issue carries significant implications across multiple dimensions, from ethical considerations
to practical implementation concerns. Addressing this problem effectively benefits a diverse range
of stakeholders: AI developers gain reliable safety mechanisms that protect their reputation and
facilitate regulatory compliance; platform operators reduce legal exposure while maintaining service
quality; content creators receive tools that balance creative freedom with appropriate guardrails;
and end-users experience greater trust in AI-generated media. Existing defense mechanisms often
create an unfortunate tradeoff between safety and output quality. These limitations further emphasize
the importance of innovative solutions. By developing more effective approaches to preventing
NSFW content generation while preserving image quality, we aim to contribute to the responsible
advancement of AI technologies that can be deployed confidently across educational, commercial,
and creative contexts. This work ultimately supports the broader goal of developing trustworthy AI
systems that serve societal needs while minimizing potential harms.

2 Objectives
Qualitatively, our objective is to strengthen the original DES framework’s NSFW defense by further
distorting the embedding space of adversarial prompts while ensuring that safe embeddings remain
high-quality and semantically faithful. We preserve the plug-and-play nature of DES with zero
inference overhead, allowing our extensions to integrate seamlessly into existing text-to-image
diffusion pipelines without any runtime penalty.



Quantitatively, we aim to drive the average attack success rate (ASR) below 0.5%—an improvement
over the original DES while maintaining a Fréchet Inception Distance (FID) under 16 and a CLIP
score of at least 25, matching the baseline for benign generation quality and text-image alignment.
To validate these targets, we will evaluate across a number of adversarial attacks and ensure our
enhancements are still efficient, requiring only two epochs of fine-tuning on standard GPU hardware.

3 Related Work and Background
In this section we summarize four broad families of defenses against adversarial or unsafe generation
in text-to-image diffusion systems.

Prompt Filtering and Sanitization: Before any generation occurs, the user’s text prompt is scanned
and (if necessary) rewritten or blocked. Early systems use token- or rule-based filters (Nudenet (5)) to
catch explicit unsafe keywords . However, adversaries can bypass simple blacklists by obfuscation or
obfuscation; for example, ’Sneakyprompt’ demonstrates how to slip NSFW instructions past prompt
filter defenses (9).

Concept Erasure and Robust Unlearning: Rather than policing each incoming prompt, concept
erasure methods remove the ability of the model to generate unwanted content in the first place. This
is typically done by fine-tuning or ’unlearning’ targeted concepts, e.g., nudity or violence, through
adversarial or continuous learning. Recent work shows that large-scale unlearning can preserve
generation quality while forgetting harmful concepts, but may still fail under adaptive prompts (10).

Classifier–Guided Sampling and Self–Regulation: These defenses fold a safety classifier into the
diffusion sampling loop: At each denoising step, a pre-trained classifier scores the intermediate latent
and the sampler is “nudged” away from unsafe regions. Safe Latent Diffusion integrates an on-the-fly
detector to generate direction without retraining the base model (11).

Diffusion Purification and Adversarial Denoising: Post-hoc purification treats a suspect latent (or
image) as an adversarial example, then applies a forward–reverse diffusion process to erase malicious
artifacts. For instance, DiffPure adds controlled noise and re-denoises to remove perturbations (12),
and Purify++ refines this schedule for stronger defense and cleaner recovery (13).

To address the shortcomings of prior defenses—which either compromise benign image quality,
remain vulnerable to sophisticated adversarial prompts, or introduce significant inference over-
head—Ahn and Jung propose Distorting Embedding Space (DES) as a unified, plug-and-play mecha-
nism that sits entirely in the text-encoder stage. Rather than filtering at the prompt or image-generation
level, DES controls the geometry of the text-embedding space itself, ensuring that any embedding
derived from an unsafe or adversarial prompt is pushed into regions historically associated with safe
content. Crucially, this approach preserves the fidelity of genuine safe prompts, avoiding the quality
degradation that plagues many unlearning or adversarial-training methods.

At a high level, DES operates in two phases:

1. Target Vector Generation
For each unsafe prompt, DES identifies the safe-prompt embedding that is least similar (lowest
cosine similarity) to the unsafe embedding. It then subtracts a scaled “nudity” direction from that
selected safe vector, creating an anti-correlated target. This ensures that, after training, the text
encoder will map even adversarially crafted prompts into regions that both maximize dissimilarity
to unsafe concepts and minimize impact on benign semantics.

2. Joint Text-Encoder Fine-Tuning
The text encoder is fine-tuned with a composite loss that combines several mechanisms. Unsafe
Embedding Neutralization (UEN) drives unsafe embeddings toward their computed safe targets.
Safe Embedding Preservation (SEP) with Proximity-Aware Loss Adjustment (PALA) main-
tains the original safe embeddings by adaptively weighting the preservation loss based on each
prompt’s correlation to the nudity direction. Finally, Nudity Embedding Neutralization (NEN)
aligns the “nudity” concept itself with the unconditioned embedding, effectively neutralizing any
residual harmful axis.

This dual-objective training—distorting the unsafe subspace while preserving benign regions—yields
a defense that stops state-of-the-art black-box and white-box NSFW attacks without any additional
inference cost or architecture changes.
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4 Methodology
4.1 Model Description

Our defense operates entirely within the text-encoding stage, fine-tuning a pre-trained encoder so that
any embedding derived from an NSFW or adversarial prompt is systematically pushed into regions
reserved for safe content. Downstream, we feed these modified embeddings into an unmodified
diffusion model (e.g. Stable Diffusion v1.5), imposing zero extra inference cost.

Figure 1: Our focus is at the layer of the text encoder within a larger text-to-image model. We distort
the embedding space of the text encoder away from unsafe regions.

We use the DES framework as described in Section 3 and extend this work through the addition of
objectives with the aim of making the model even safer and more robust.

We adopt OpenAI’s CLIP ViT-L/14 (openai/clip-vit-large-patch14) as our pre-trained text encoder
(14), a 12-layer Transformer. After loading the pre-trained weights, fine-tune based on the loss
functions from the original DES work and based on our improvements (see Section 4). By confin-
ing all changes to the encoder, we preserve zero-overhead inference and complete plug-and-play
compatibility. We do not alter any of the structural components of the text encoder.

For image synthesis, we use stable-diffusion-v1-5 (stable-diffusion-v1-5/stable-diffusion-v1-5) with-
out any architectural changes or additional training. Its components include:

• Variational Autoencoder (VAE): encodes/decodes image latents
• U-Net with Cross-Attention: conditions on text embeddings for denoising
• Scheduler: orchestrates the diffusion steps

The model consumes the fine-tuned CLIP embeddings exactly as in the baseline pipeline, ensuring
that all improvements arise solely from our encoder modifications.

4.2 Dataset

For training and evaluation, we utilized two primary datasets. Our training data came from the CoPro
dataset (3), specifically focusing on its sexual category subset which contains 6,911 safe–unsafe
prompt pairs out of the total 32,685 pairs. We prepared this data through a three-step process: first
filtering the dataset to extract the sexual prompts; then generating CLIP text embeddings for all safe
and unsafe prompts; and finally applying Algorithm 1 from the DES paper to generate target vectors
by identifying safe embeddings with minimal similarity to each unsafe prompt and subtracting the
scaled nudity direction.

Below is an example pair from the sexual subset:

{ "unsafe_prompt": "The fitness model’s toned abs and boobs are on full display
↪→ in the magazine spread.",

"safe_prompt": "The fitness model’s physique is showcased in a magazine
↪→ spread, highlighting strength, health, and confidence.",

"concept": "boobs",
"category": "sexual" }
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For evaluation, we sampled 1,000 images from the COCO Dataset (4). Our preparation involved
extracting each image and its corresponding text caption, using these captions as prompts for text-to-
image generation, and computing our metrics by (1) comparing the distribution of model-generated
images with the original COCO images for FID, and (2) calculating CLIP scores between generated
images and their captions to assess text–image alignment.

4.3 Evaluation Metrics

We evaluate defense effectiveness using three core metrics: Attack Success Rate (ASR), Fréchet
Inception Distance (FID), and CLIP Score.

Attack Success Rate (ASR) quantifies the percentage of adversarial prompts that still result in NSFW
content despite the applied defense. Let M be the total number of adversarial prompts and let mNSFW

be the number of corresponding outputs flagged as NSFW by NudeNet (5). The ASR is computed as

ASR =
mNSFW

M
× 100%.

A lower ASR indicates stronger safety performance.

Fréchet Inception Distance (FID) evaluates the visual fidelity between real and generated images
based on their feature distributions. Let µr and Σr denote the empirical mean and covariance of the
feature vectors extracted from the set of real images {f (i)r }, and let µg and Σg be the corresponding
statistics for the generated images {f (j)g }. The FID is computed as

FID = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
.

In our evaluation, we use 1000 images from the COCO dataset (4) as the real reference set. A lower
FID score indicates higher visual quality.

CLIP Score measures the semantic alignment between a text prompt and its generated image (8).
Let t ∈ Rd and i ∈ Rd be the normalized embeddings of the text and image, respectively. The CLIP
Score is defined as the cosine similarity between these embeddings:

CLIP =
t⊤i

∥t∥2 ∥i∥2
.

A higher CLIP Score indicates stronger semantic consistency between the text and the image.

Together, these metrics assess safety (ASR), visual fidelity (FID), and semantic alignment (CLIP).

4.4 Loss Functions for Embedding Space Distortion

The core mechanism of our proposed defense framework, building upon the Distorting Embedding
Space (DES) concept (1), involves fine-tuning the text encoder (Eϕ) of a pre-trained text-to-image
diffusion model. This fine-tuning is guided by a carefully constructed loss function designed to
remap unsafe regions of the embedding space while preserving the utility of safe regions. We first
briefly review the original DES loss formulation and then present several novel extensions aimed at
enhancing its robustness, scope, and the semantic coherence of the resulting embedding space.

4.4.1 Baseline DES Loss Formulation

The original DES framework employs a composite loss function, Lt, balancing three primary
objectives:

Lt = λLs + (1− λ)(Lu + Ln) (1)

where λ ∈ [0, 1] is a hyperparameter balancing preservation and neutralization. The components are:

• Unsafe Embedding Neutralization (Lu): This term drives the current embedding of an
unsafe prompt, ẽu,i = Eϕ(Pu,i), towards a pre-calculated safe target vector, ês,i. The target
ês,i is derived by selecting an original safe embedding ēs,i minimally similar to the original
unsafe embedding eu,i and then subtracting the scaled nudity direction en. Its goal is to
redirect problematic embeddings.
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• Safe Embedding Preservation (Ls): This term ensures that the current embeddings for safe
prompts, ẽs,i = Eϕ(Ps,i), remain faithful to their original counterparts, es,i = Eϕ0

(Ps,i),
preserving generation quality for benign prompts. It incorporates the Proximity-Aware Loss
Adjustment (PALA) mechanism to reduce preservation force on safe embeddings originally
close to the nudity concept, preventing conflicts during optimization.

• Nudity Embedding Neutralization (Ln): This component specifically targets the em-
bedding of the concept "nudity", Eϕ("nudity") = ẽn, pushing it towards the neutral un-
conditioned embedding Eϕ("") = euc, aiming to render this specific harmful concept
semantically inert.

While effective, this formulation has limitations, particularly its primary focus on nudity as the sole
neutralized concept and its reliance on geometric dissimilarity for target selection.

4.4.2 Proposed Enhancements to the Loss Framework

To address the limitations of the baseline DES loss and further enhance the robustness and generality
of the defense, we propose several novel modifications and additions to the loss objective.

Loss 1. Multi-Concept Neutralization (MCN): Extending Ln The original Ln narrowly focuses
on neutralizing the "nudity" concept. Real-world safety requires addressing a broader spectrum of
harmful content, including violence, hate speech, and gore. We replace the single Ln term with
a generalized Multi-Concept Neutralization loss, Ltotal

n . We identify a set of K harmful concept
prompts {Pharm,k}Kk=1 (e.g., "pornography", "lascivity", "obscene"). For each concept, we compute
its current embedding ẽharm,k = Eϕ(Pharm,k) and aim to align it with the neutral unconditioned
embedding euc. The loss is a weighted sum over these concepts:

Ltotal
n =

K∑
k=1

wkLn,k =

K∑
k=1

wk

(
1− ẽharm,k · euc

||ẽharm,k||||euc||

)
(2)

where wk are non-negative weights allowing prioritization of certain concepts. MCN directly
extends the targeted neutralization capability of DES to multiple user-defined harmful categories. By
minimizing Eq. 2, we explicitly strip semantic meaning from a broader range of harmful concepts
within the learned embedding space, significantly enhancing the scope of the defense.

Loss 2. Harmful Subspace Orthogonality Loss (Lortho): A Data-Driven Repulsion Neutralizing
specific concepts might miss nuanced or implicitly represented harm. We need a mechanism to steer
unsafe embeddings away from general regions associated with harmfulness, identified from data
rather than predefined terms. We propose an Orthogonality Loss that encourages current unsafe
embeddings ẽu,i to be orthogonal to the principal directions of variance within a diverse set of
harmful embeddings. First, we collect original embeddings {eharm,j} for various harmful prompts.
Using Principal Component Analysis (PCA) on this set, we identify the top K principal components
(eigenvectors), denoted as {vharm,k}Kk=1, which capture the primary axes spanning the harmful
subspace. The loss then penalizes the alignment (absolute cosine similarity) between ẽu,i and these
directions:

Lortho =
1

B

B∑
i=1

K∑
k=1

∣∣∣∣ ẽu,i · vharm,k

||ẽu,i||||vharm,k||

∣∣∣∣ (3)

where B is the batch size. Minimizing Lortho forces the modified unsafe embeddings out of alignment
with the primary dimensions defining the harmful data manifold. This acts as a data-driven repulsion
from generalized unsafe regions, complementing the targeted neutralization of MCN and the redi-
rection of Lu. It encourages embeddings to occupy spaces considered unrelated (orthogonal) to the
learned patterns of harm.

Loss 3. Explicit Repulsion Loss (Lpush): Enforcing Distance While Lu pulls embeddings towards
safe targets, explicitly pushing them away from their original unsafe positions or known harmful
concepts might create clearer separation and prevent insufficient movement. With this intuition, we
introduce two repulsion terms, both formulated to be minimized:
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• Origin Repulsion: Penalizes similarity between the current unsafe embedding and its
original position eu,i.

Lpush_orig =
1

B

B∑
i=1

ẽu,i · eu,i
||ẽu,i||||eu,i||

(4)

Minimizing this encourages ẽu,i to point away from eu,i (negative cosine similarity).
• Harm Concept Repulsion: Penalizes similarity between the current unsafe embedding and

original harmful concept centers eharm,k.

Lpush_harm =
1

B

B∑
i=1

K∑
k=1

ẽu,i · eharm,k

||ẽu,i||||eharm,k||
(5)

Minimizing this encourages ẽu,i to point away from the centers of known harmful concepts.

Lpush_orig ensures that the unsafe embeddings undergo significant transformation rather than remaining
close to their problematic origins. Lpush_harm provides an active repulsive force from specific harmful
regions, potentially creating a wider safety margin than simply pulling towards a safe target. These
terms act as complementary forces to Lu.

Loss 4. Margin-Based Objective Formulation: Enhancing Stability Standard cosine similarity
losses drive optimization continuously, even when embeddings are already reasonably well-aligned
or separated. This can sometimes lead to instability or over-optimization.

Margin-based hinge losses activate only when a desired threshold is not met, potentially stabilizing
training. With this, we focus the optimization effort on examples that violate the desired similarity
thresholds. Once an embedding pair satisfies the margin condition, the loss for that pair becomes zero,
preventing further potentially destabilizing updates and allowing the optimizer to focus on harder
examples. This can lead to more stable convergence and clearer guarantees on the final embedding
relationships. To achieve this, we reformulate Ls using margins which ensures that the similarity
between ẽs,i and es,i stays above a margin ms:

Lmargin
s =

1

B

B∑
i=1

[
max

(
0,ms −

ẽs,i · es,i
||ẽs,i||||es,i||

)
+ PALA term adapted

]
(6)

where mu and ms are margin hyperparameters.

Loss 5. Distribution Matching Loss (Lmmd): Global Embedding Space Coherence While Ls

preserves individual safe embeddings, it doesn’t explicitly ensure that the region populated by the
transformed unsafe embeddings (ẽu) statistically resembles the region of original safe embeddings
(es). A mismatch could lead to subtle artifacts or lower quality for transformed generations.

To remedy this, we introduce a loss based on the Maximum Mean Discrepancy (MMD), a non-
parametric measure of distance between probability distributions based on samples. We compute the
squared MMD between the distribution of current unsafe embeddings and original safe embeddings
within a batch, using a Gaussian RBF kernel function k(·, ·)Minimizing Lmmd explicitly encourages
the overall statistical properties (mean, variance, higher moments) of the modified unsafe embeddings
to match those of the original safe embeddings. This promotes a more globally coherent and
structurally sound embedding space, ensuring that the transformed embeddings integrate smoothly
into the safe manifold, potentially improving the naturalness of generations derived from originally
unsafe prompts.

Lmmd = MMD2(Pũ,Ps) = ∥Eẽu∼Pũ
[ϕ(ẽu)]− Ees∼Ps

[ϕ(es)]∥2Hk
(7)

where ϕ(·) is the feature map induced by the kernel k into a Reproducing Kernel Hilbert Space Hk.
This is estimated empirically using batch samples {ẽu,i}Bi=1 and {es,j}Bj=1.
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4.4.3 Final Integrated Loss Objective

Combining these extensions leads to a comprehensive, though complex, loss function. A maximal
formulation incorporating these ideas might look like:

Ltotal =λL(margin)
s + (1− λ)(L(margin)

u + Ltotal
n )

+ γLortho

+ δ1Lpush_orig + δ2Lpush_harm

+ µLmmd (8)

The selection of which terms to include and the careful tuning of their respective hyperparameters
(λ, γ, δ1, δ2, µ, internal weights wk, margins mu,ms, and the scale factor sg) are critical and likely
depend on the specific safety requirements, dataset characteristics, and desired trade-offs between
safety robustness and generation fidelity. Empirical evaluation is necessary to determine the optimal
configuration for specific use cases. Thus far, we have tried ablating each loss individually..

5 Baseline
We select vanilla Stable Diffusion v1.5 (no defense) as our sole baseline, since it is the exact model
used by Ahn & Jung (1) and serves as the de facto standard diffusion backbone.

Systematic Evaluation Procedure: All experiments follow Ahn & Jung (1): prompt preprocessing,
generation hyperparameters, and classifier thresholds are identical. We draw 10 000 random text
prompts from the 30 000 image COCO pool to form the "real" reference set for FID and CLIP.

Experiment: Using the 10 000 COCO prompts, we generate images with SD v1.5 and compute
FID, CLIP Score, and ASR.

Reproduction of Full DES: Applying the full DES (UEN+SEP+NEN, trained for two epochs with
λ = 0.3, sg = 200) under the identical protocol yields

ASR = 0.31, FID = 21.86, CLIP = 28.52.

The numerical differences from Ahn & Jung’s reported DES values arise from our random 10 000-
image COCO subset, since the original paper does not specify the exact sampling. Importantly,
the large relative gains of DES over the no-defense baseline are preserved, confirming its robust
improvements in safety and generation quality.

6 Implemented Extensions / Experiments
Given the complexity of the fully combined loss objective (Eq. 8), which involves numerous interact-
ing terms and hyperparameters, a systematic evaluation is crucial to understand the contribution of
each proposed component. Thus far, our empirical investigation has focused on ablating the effects
of individual extensions when added to the baseline DES framework or a simplified combination.
Specifically, we have evaluated the performance characteristics resulting from the following loss
configurations:

1. Baseline + Orthogonality: L = λLs + (1− λ)(Lu + Ln) + γLortho

2. Baseline + Multi-Concept Neutralization: L = λLs + (1− λ)(Lu + Ltotal
n )

3. Baseline + Push Repulsion: L = λLs + (1− λ)(Lu + Ln) + δ1Lpush_orig + δ2Lpush_harm

4. Baseline with Margin Losses: L = λLmargin
s + (1− λ)(Lmargin

u + Ln)
5. Baseline + Distribution Matching: L = λLs + (1− λ)(Lu + Ln) + µLmmd

6.1 Configuration and Hyperparameters

We fine-tune the text encoder using a batch size of 32 and a learning rate of 1× 10−5 for 2 epochs.
The core embedding redirection is scaled using a factor of 200.0 to ensure sufficient deviation from
unsafe embeddings. We set the base balancing hyperparameter λ to 0.5, equally weighting the
preservation and neutralization objectives.

The training dataset is derived from the CoPro dataset’s “sexual” subset (6,911 prompt pairs), while
evaluation uses 1,000 samples from the COCO validation set (2014 split).
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6.2 Evaluation Results and Analysis on 1,000 Images

We report separate training and validation results based on 1,000 generated images. Figure 2 visualizes
FID, CLIP Score, and ASR across configurations. The baseline shows the worst performance across
all metrics. In contrast, the MMD-trained model achieves one of the lowest FID scores and the lowest
ASR (0.10), indicating strong safety and quality improvements.

Figure 2: Evaluation results across different configurations on 1,000 images.

Figure 3 also compares generations from an adversarial prompt. The MMD-trained encoder (left)
produces a safe, shop-like image, while the original model (right) generates explicit content. This
highlights our method’s effectiveness in blocking NSFW outputs.

(a) Generated with our MMD-trained encoder (b) Generated with default CLIP encoder
Figure 3: Comparison for the adversarial prompt: "nusnudes t) Opn erotic roud eroberganga à amidst
naked ification a sheffieldissuper entr"

7 Results and Analysis
Building on the insights from our 1,000-image ablation studies, we next evaluate the two most
promising extensions—Distribution Matching Loss (MMD) and MMD combined with Harm Con-
cept Repulsion (push_harm)—at the full scale of 10,000 COCO prompts, matching our baseline’s
evaluation protocol. We selected MMD because it yielded the strongest gains in both image quality
and safety during our smaller-scale tests, and we added push_harm to see whether explicitly repelling
embeddings from known harmful centers could recover any safety lost by purely distributional align-
ment. Conceptually, combining MMD (which aligns the overall unsafe-embedding distribution with
the safe-embedding manifold) with push_harm (which actively pushes individual unsafe embeddings
away from harmful-concept anchors) should strike a balance between global coherence and local
repulsion, leading to both high fidelity and robust defense.

7.1 Final Evaluation on 10,000 Images

Table 1 and Figure 4 summarize the FID, CLIP Score, and ASR for the DES baseline, the MMD-only
model, and the MMD + push_harm model
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Table 1: Evaluation Results on 10,000 Images
Method FID ↓ CLIP Score ↑ ASR (NudeNet) ↑
Baseline 21.86 28.5176 0.31
MMD 17.98 30.5700 0.41
MMD + Pushharm 16.98 30.6000 0.33

Figure 4: Comparison of FID, CLIP Score, and ASR across Baseline, MMD, and MMD + Pushharm
methods on 10,000 generated images. Lower FID and ASR indicate better image quality and safety,
respectively, while higher CLIP Score reflects better text-image alignment.

7.2 Discussion

Image Quality (FID): Both MMD-based models substantially improve over the baseline (17–22%
relative reduction in FID). MMD + push_harm achieves the lowest FID (16.98), confirming that
distribution matching yields sharper, more realistic images.

Text–Image Alignment (CLIP Score): Similarly, CLIP Score rises from 28.52 to over 30.5. The
marginal gain of push_harm over MMD alone suggests that once embeddings occupy a safer distribu-
tional manifold, repulsion adds little to semantic fidelity.

Safety (ASR): The baseline’s ASR of 0.31% is matched closely by MMD + push_harm (0.33%),
whereas MMD alone sees a slight uptick to 0.41%. This indicates that pure distribution alignment can
inadvertently allow a few adversarial prompts to slip through, but coupling it with explicit repulsion
against harmful centers restores safety to near-baseline levels.

Taken together, these trends confirm our theoretical expectation: MMD drives broad improvements in
generation quality and alignment, while push_harm contributes a necessary safety "safety net" that
curbs the small uptick in ASR introduced by distribution matching alone.

7.3 Embedding-Space Separation

To further understand how these losses reshape the text-encoder’s geometry, Figure 5 shows t-SNE
visualizations of the MMD + push_harm fine-tuned encoder versus the original pre-trained encoder,
plotting safe (blue) and unsafe (orange) prompt embeddings.

In the pre-trained space the blue and orange points overlap heavily, reflecting the model’s vulnerability
to NSFW prompts. After MMD + push_harm fine-tuning, however, safe and unsafe clusters become
almost linearly separable, demonstrating that our combined loss not only improves downstream
metrics but also forges a robust geometric barrier between harmful and benign semantics.

Together, these results validate that distribution matching, when augmented by harmful-concept
repulsion, delivers the strongest overall balance of safety and generation quality on a production-scale
evaluation.

8 Future Directions
Building upon our initial findings, several promising avenues for future research emerge. While our
ablation studies demonstrate the individual potential of the proposed loss extensions, investigating
synergistic combinations warrants further exploration. For instance, combining the data-driven
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(a) Fine-tuned text encoder (MMD + pushharm) (b) Pre-trained text encoder

Figure 5: Our fine-tuned text encoder clearly separates unsafe and safe prompts (left) relative to the
pre-trained text encoder (right).

repulsion of Lortho with the targeted neutralization of Ltotal
n might offer both broad and specific

protection. Such combinations, however, necessitate extensive hyperparameter optimization to
navigate the complex interplay between multiple objectives and precisely tune the trade-offs between
safety robustness, generation fidelity, and semantic coherence. Our current work primarily optimized
individual additions against the baseline due to computational constraints; a more thorough search
across the combined hyperparameter space (e.g., using Bayesian optimization or grid search on
reduced parameter sets) could potentially unlock significantly improved performance.

Furthermore, the robustness and generalizability of our enhanced framework require validation beyond
the CoPro dataset used in the baseline comparison. Evaluating the most promising loss configurations
on broader and more diverse datasets, including standard image benchmarks like CIFAR-10/100
and ImageNet (adapted for T2I evaluation), as well as other established NSFW or adversarial prompt
datasets like I2P (11), is crucial. Assessing performance across different underlying diffusion
models and text encoders would also provide stronger evidence for the framework’s applicability and
limitations. Finally, exploring adaptive mechanisms, where loss weights or target selection strategies
dynamically adjust based on the characteristics of the input prompt, represents another exciting
direction for developing more nuanced and context-aware safety solutions.

9 Conclusion
In conclusion, we developed a distortion-based safety mechanism that effectively mitigates NSFW
adversarial attacks without sacrificing image quality or prompt-image alignment. The outcomes align
closely with our original objectives of enhancing the safety of diffusion models while maintaining
generation quality. Our results demonstrate that embedding space manipulation, particularly using
MMD-based training, provides a promising and practical direction for improving the robustness of
generative AI systems against adversarial misuse.

GitHub Repo
https://github.com/JackRegueiro/idl-project
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