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Abstract—Studies on artificial neural networks rarely address
both vanishing gradients and overfitting issues. In this study, we
follow the pupil learning procedure, which has the features of
interpreting, picking, understanding, cramming, and organizing,
to derive the pupil learning mechanism (PLM) by which to
modify the network structure and weights of 2-layer neural
networks (2LNNs). The PLM consists of modules for sequential
learning, adaptive learning, perfect learning, and less-overfitted
learning. Based upon a copper price forecasting dataset, we
conduct an experiment to validate the PLM module design
modules, and an experiment to evaluate the performance of PLM.
The empirical results indeed approve the PLM module design and
show the superiority of the proposed PLM model over the linear
regression model and the conventional backpropagation-based
2LNN model.

Index Terms—Computing methodologies, machine learning
algorithms, artificial intelligence, adaptive neural networks, over-
fitting, pupil learning.

I. INTRODUCTION

STUDIES of 2-layer neural networks (2LNNs) [1] rarely
attempt to address both vanishing gradients and overfitting

issues. In this study, we follow the pupil learning procedure
shown in Table I to derive the pupil learning mechanism
(PLM), which consists of modules for sequential learning,
adaptive learning, perfect learning, and less-overfitted learning.

Many learning-based artificial intelligence (AI) studies de-
ploy artificial neural networks (ANN) with a learning algo-
rithm to a model, but encounter difficulties. For instance,
backpropagation learning [1], which naively implements gra-
dient descent optimization (GDO) to pursue weight estimates
to minimize the loss function, encounters the difficulty of
vanishing gradients. Furthermore, to progressively learn in a
dynamic environment under a learning-based AI paradigm,
the intelligence system should be self-adaptable, i.e., able
to modify its own network structure and weights without
human input. Sequential learning algorithms feature online
processing, adjustable parameters, and an adaptable network
structure [2]. Considerable efforts have been devoted to devel-
oping approaches for network structure adjustment, including
(1) constructing approach: starting with a small network and
then adding hidden nodes and connections [3], (2) pruning
approach: starting with an extensive network and then remov-
ing irrelevant hidden nodes and connections [4]–[6], and (3)
combining these constructing and pruning approaches [7]–
[11]. However, these approaches fail to resolve overfitting
challenges. An overfitted model is a model that (1) contains
more parameters than can be justified by the data or (2)
corresponds too closely or exactly with the training dataset
and may therefore fail to fit testing data or predict future
observations reliably [12], [13].

Recently, many learning-based AI studies deploy deep neu-
ral networks (DNN) with a deep learning (DL) algorithm that

TABLE I
THE PUPIL LEARNING PROCEDURE THAT HAS THE FEATURES OF

INTERPRETING, PICKING, UNDERSTANDING, CRAMMING, ORGANIZING
(IPUCO)

• When learning, the pupil quickly interprets instances, separating
them into two groups: acquainted and unacquainted instances.
Furthermore, the pupil typically learns unacquainted instances one
by one and chooses easy (unacquainted) instances to learn first.

• When encountering a new (unacquainted) instance, the pupil tries
to understand it by using the learning process accompanied with
his current knowledge. If it cannot be understood successfully,
then the pupil crams it. The cramming process adds a strict rule
to his knowledge system.

• From time to time, the pupil comprehends all learned instances
for a concise knowledge system.

implements stochastic gradient descent optimization (SGDO)
[14]. DNN models use complex network architectures that
include many layers and nodes to learn highly nonlinear
correlations among data. These DNNs have revolutionized the
business and technology world with good performance in areas
as varied as image classification, object detection and tracking,
and video analytics. The frameworks of TensorFlow [15], [16]
or PyTorch [17] and graphics processing units (GPUs) are
used to enhance the learning performance of DL. However,
complications still arise with DL, including long training
times, overfitting, and the need for manual hyperparameter
tuning [18], [19].

Various attempts [8], [9], [11] have been made to derive
new learning approaches to resolve overfitting and vanishing
gradients. For example, Tsaih [8], [9] adopts a hybrid approach
to systematically construct and prune hidden nodes of 2LNN
with the tanh activation function. [11] further revise this
approach using the cramming, softening, and integrating (CSI)
learning algorithm shown in Table II with parametric rectified
linear unit (ReLU) activations instead of tanh activations. In
addition, a variety of recent studies apply different methods to
resolve the aforementioned issues [20]–[23]. However, most
of the studies provide little empirical validation, making the
proposed approaches controvertible.

Extending [8], [9], [11] and following the pupil learning
procedure shown in Table I, in this study we derive the
PLM, which applies to 2LNNs with ReLU activations [24],
[25] and contains modules for sequential learning, adaptive
learning, perfect learning, and less-overfitted learning. Due to
the variety of advanced modules developed to process data of
high dimensions and large nonlinearity, it is mathematically
infeasible to validate the proposed PLM. Therefore, in this
study, we conduct a copper price forecasting experiment to
empirically validate the PLM module design. We also conduct
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TABLE II
CSI (CRAMMING, SOFTENING, AND INTEGRATING) LEARNING

ALGORITHM [11].

Step 1: Use two reference observations {(x1, y1), (x2, y2)} with y1 ·
y2 = −1 to set up an acceptable SLFN estimate with one hidden
node. Set n = 3.

Step 2: If n > N , STOP.
Step 3: Pick up the first n reference observations {(xc, yc)} which are

sorted by all N reference observations’ squared residuals in
ascending order. Let I(n) be the set of indices of these picked
observations.

Step 4: If the condition L regarding {f(xc,w, r),∀c ∈ I(n)} is
satisfied, go to Step 7; otherwise, there is one and only κ ∈ I(n)
that is not at the right place.

Step 5: Save w and r.
Step 6: Apply the weight-tuning mechanism to min

w,r
En(w, r) and adjust

w and r until one of the following two cases occurs:
1) If the condition L regarding {f(xc,w, r),∀c ∈ I(n)} is

satisfied, go to Step 7.
2) If the condition L is not satisfied, restore w and r then apply

the cramming mechanism to add one extra hidden node to
the existing SLFM to obtain an acceptable SLFN estimate.

Step 7: Apply the softening and integrating mechanism to prune the
irrelevant hidden node, n+ 1 → n; go to Step 2.

a copper price forecasting experiment to empirically evaluate
the performance of PLM. The empirical results indeed exhibit
incremental learning, adaptive learning, perfect learning, and
less-overfitted learning as well as that the PLM can effectively
(1) adjusts the number of used hidden nodes according to the
consequence of learning and new data, and (2) reduces the
overfitting tendency while learning all training instances. The
empirical results also show the superiority of the proposed
PLM model over the linear regression model and the conven-
tional backpropagation-based 2LNN model.

The rest of the paper is organized as follows: Section 2
describes in detail the proposed PLM. Section 3 presents the
experimental design, and Section 4 presents the empirical
results. Section 5 concludes and suggests future work.

II. PROPOSED PUPIL LEARNING MECHANISM

Without loss of generalization, we consider the regression
problem with real-number inputs and use a 2LNN with one
output node defined in Eqs. (1) and (2). Table III lists the
notation.

ai(x
c,wH

i ) ≡ ReLU

wH
i0 +

m∑
j=1

wH
ij x

c
j

 (1)

f(xc,w) ≡ wo
0 +

p∑
i=1

wo
i ReLU

wH
i0 +

m∑
j=1

wH
ij x

c
j

 (2)

At the n-th stage, let I(n) be the subset of indices of training
instances. The learning goal is to find w where

|ec| ≤ ε, ∀c ∈ I(n).

In this study, the c-th training instance is acceptable if |ec| ≤ ε;
otherwise, it is unacceptable. Fig. 1 shows the adaptive GDO

TABLE III
NOTATION LIST. CHARACTERS IN BOLD REPRESENT COLUMN VECTORS,

MATRICES, OR SETS; SUPERSCRIPT H INDICATES HIDDEN LAYER
QUANTITIES; SUPERSCRIPT o INDICATES OUTPUT LAYER QUANTITIES;

(·)T DENOTES THE TRANSPOSE OF (·).

ReLU(x) ≡ max(0, x);
m: the number of input nodes;
xc ≡ (xc

1, x
c
2, · · · , xc

m)T : the cth input;
yc: the desired output of the cth input;
N : the total amount of training instances;
p: the number of adopted hidden nodes;
wH

i0 : the bias of ith hidden nodes;
wH

ij : the weight between the jth input variable and the ith hidden
nodes;
wH

i ≡ (wH
i0 , w

H
i1 , w

H
i2 , · · ·wH

im)T;
wo

0 : the bias value of the output node;
wo

i : the weight between the ith hidden node and the output node;
wo ≡ (wo

0 , w
o
1 , w

o
2 , · · · , wo

p)
T

wH ≡ (wH
0 ,wH

1 ,wH
2 , · · · ,wH

p )T;
w ≡ {wo,wH};
ec ≡ f(xc,w)− yc.

Fig. 1. AGDO implementing an optimizer with an adaptive learning rate η.

(AGDO) implementing an optimizer (e.g., the Adam optimizer
[26]) with automatic adjustment of learning rate η to calculate
∇Ln(w), where

Ln(w) ≡
∑

c∈I(n)

(ec)
2
/n. (3)

However, AGDO does not eliminate vanishing gradients and
thus may yield an unacceptable 2LNN due to convergence
at a local minimum or a saddle point of Ln(w). Rate η is
smaller than ε1 (a tiny value) and the upper iteration bound
(i ≤ 50) is designed to identify unacceptable 2LNNs. In Fig.
1, exit point A denotes an acceptable 2LNN, and U denotes
an unacceptable 2LNN.

A flowchart for the proposed PLM is shown in Fig. 2.
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Fig. 2. Flow chart of proposed PLM.

Details are provided as follows. Let

Dn = max
c∈I(n)

|f(xc,w)− yc|,

where a 2LNN produces output f(xc,w) when input is xc

and the desired output is yc.
The initializing module sets up a 2LNN with one hidden

node and then uses the GDO to tune the weights and thresholds
of the 2LNN with the training instances {(xc, yc) : c ∈
I(N)}. Least trimmed squares (LTS) [10], [11] is defined as
minimizing

∑q
c=1(e

[c])2, where only the q smallest ordered
squared residual values are included in the summation, and
(e[c])2 denotes the sorted squared residuals in ascending order
(e[1])2 ≤ (e[2])2 ≤ · · · ≤ (e[N ])2. The interpreting LTS
module implements the LTS principle, which first sorts all
training instances by their squared residuals in ascending
order as

(
e[1]
)2 ≤

(
e[2]
)2 ≤ · · · ≤

(
e[N ]

)2
. Second, the

interpreting LTS module examines the acceptability of every
instance (i.e., the cth instance is acceptable if |ec ≤ ε). Third,
the interpreting LTS module yields the n value, the number of
acceptable instances. Thus, Dn ≤ ε after the interpreting LTS
module and before the sequential module (n+ 1 → n).

The stopping criterion (n < 0.97N) associated with the
sequential module indicates that the PLM sequentially learns
the training instances until more than ⌊0.97N⌋ instances
are acceptable, where ⌊x⌋ is the largest integer less than
or equal to x. In other words, the PLM learns merely the
majority of training data (with at most ⌊0.97N⌋ data), but the
learning terminates when the resultant 2LNN renders more
than ⌊0.97N⌋ (training) data acceptable.

For n < 0.97N , the picking LTS module selects the
first n instances with the smallest squared residuals as the
training instances, for which I(n) is the set of instance indices.
Note that the I(n) subset contains merely one unacceptable
instance: the [n]-th instance. This prevents the PLM not only
from learning instances with much larger squared residuals
that are difficult for the learning mechanism to understand,
but also from causing more cramming occurrences, which may

TABLE IV
CRAMMING MODULE

Step 1: Select a tiny positive number ζ and randomly generate an m-
vector γ of length one such that

γT
(
xc − x[n]

)
̸= 0,

(
ζ + γT

(
xc − x[n]

))(
ζ − γT

(
xc − x[n]

))
< 0,

∀c ∈ I(n) \ {[n]}.

Step 2: Let p+ 3 → p, add three new hidden nodes p− 2, p− 1, and
p to the current 2LNN, and assign their associated weights and
thresholds as follows to ensure that |ec| ≤ ε, ∀c ∈ I(n) is true:

wH
p−2 = γ, wH

p−2,0 = ζ − γTx[n],

wo
p−2 =

y[n] − wo
0 −

∑p−3
i=1 wo

i a
[n]
i

ζ
,

wH
p−1 = γ, wH

p−1,0 = −γTx[n],

wo
p−1 =

−2
(
y[n] − wo

0 −
∑p−3

i=1 wo
i a

[n]
i

)
ζ

,

wH
p = γ, wH

p,0 = −ζ − γTx[n],

wo
p =

y[n] − wo
0 −

∑p−3
i=1 wo

i a
[n]
i

ζ
.

lead to too many hidden nodes and thus overfitting. Then, w
is saved such that when w is restored we can resume the
2LNN estimate to the scenario in which there is only one
unacceptable instance in the I(n) subset. The interpreting LTS
module and picking LTS modules together yield a learning
sequence in which easy instances are learned first.

The understanding module implements the AGDO of Fig.
1 with the loss function defined at equation 3 to learn all
training instances of I(n). If the understanding module results
in an acceptable 2LNN estimate, then Dn ≤ ε. Otherwise, the
PLM restores w and triggers the cramming module of Table
IV to process instance [n] by adding three hidden nodes so
the 2LNN now has p hidden nodes. That is, with the restore
module, (

y[n] − wo
0 −

p−3∑
i=1

wo
i a

[n]
i

)2

> ε2,

(
yc − wo

0 −
p−3∑
i=1

wo
i a

c
i

)2

≤ ε2,∀c ∈ I(n) \ {[n]}.

To compute Dn, we first consider instance [n] as input and
show that the output of 2LNN, f(x[n],w), equals exactly the
desired output y[n]. By Step 2 of the cramming module,

a
[n]
p−2 = ReLU

wH
p−2,0 +

m∑
j=1

wH
p−2,jx

[n]
j


= ReLU

(
ζ + γT

(
x[n] − x[n]

))
= ζ.
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Similarly,

a
[n]
p−1 = ReLU

(
γT
(
x[n] − x[n]

))
= 0,

a[n]p = ReLU
(
−ζ + γT

(
x[n] − x[n]

))
= 0.

Since f(x[n],w) equals the contribution of the first p − 3
hidden nodes to the output node plus contribution of the p−
2th, p− 1th and pth hidden nodes to the output node, by the
assignment of wo

p−2, wo
p−1, and wo

p in Step 2 of the cramming
module,

f(x[n],w) = wo
0 +

p−3∑
i=1

wo
i a

[n]
i

+ ζ

(
y[n]− wo

0 −
∑p−3

i=1 wo
i a

[n]
i

ζ

)
= y[n]

Thus, when instance [n] is input and the cramming module
is executed, no additional effect on Dn is introduced by
instance [n].

With regard to the effect on Dn of instances c ∈ I(n)\{[n]},
we argue that these instances will not increase Dn. The change
in the output node is due to the inputs from the p−2th, p−1th

and pth hidden nodes. If instance c is input,

acp−2 = ReLU

wH
p−2,0 +

m∑
j=1

wH
p−2,jx

c
j


= ReLU

(
ζ + γT

(
xc − x[n]

))
.

Similarly,

acp−1 = ReLU
(
γT
(
xc − x[n]

))
,

acp−1 = ReLU
(
−ζ + γT

(
xc − x[n]

))
.

By the assignment of wo
p−2, wo

p−1, and wo
p in Step 2 of the

cramming module,
p∑

i=p−2

wo
i a

c
i = wo

p

[
ReLU

(
ζ + γT

(
xc − x[n]

))
− 2ReLU

(
γT
(
xc − x[n]

))
+ ReLU

(
−ζ + γT

(
xc − x[n]

))]
= g(c).

In Step 1 of the Table IV, we have set ζ and γ; therefore,
g(c) = 0,∀c ∈ I(n)\{[n]}. Thus, the cramming module makes
the change in the output node in all instances c ∈ I(n)\{[n]}
equal to zero. In other words, Dn ≤ ε, and by adding
three extra hidden nodes with the ReLU activation function,
the cramming module renders |ec| ≤ ε, ∀c ∈ I(n) true
immediately.

The organizing module of Fig. 3 reduces overfitting by iden-
tifying and pruning irrelevant hidden nodes [9]. As shown in
Fig. 3, the organizing module first implements the regularizing

Fig. 3. Organizing module where w′
k ≡ w \ {w0

k,w
H
k }.

Fig. 4. Regularizing module.

module of Fig. 4, which regularizes the weights and thresholds
by means of the loss function

Lrn(w) ≡
∑

c∈I(n)

(ec)2/n+ λ∥w∥2, (4)

where λ is the regularization coefficient. In contrast with the
AGDO of Fig. 1, the regularizing module deploys AGDO to
tune w while keeping |ec| ≤ ε,∀c ∈ I(n) true. Namely, with
the loss function defined at equation 4, the regularizing module
attempts to prevent large-magnitude weights and thresholds
while keeping |ec| ≤ ε,∀c ∈ I(n) true. Thus Dn ≤ ε after
implementing the regularizing module.

After implementing the regularizing module, the organizing
module stores w and creates a new 2LNN with p−1 → p, the
kth hidden node is removed, and the weights and thresholds
are assigned as w′

k ≡ w\{wo
k,w

H
k }. Then, the understanding

module with the AGDO of Fig. 1 is applied to this new
2LNN to min

w′
k

(Ln (w
′
k)) and w′

k is adjusted with the loss
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function at equation 3. If the understanding module yields
an acceptable 2LNN, the afore-mentioned process is applied
again to the next hidden node. If the understanding module
yields an unacceptable 2LNN, then the stored 2LNN with w
is restored, p + 1 → p, k + 1 → k, and the afore-mentioned
process is again applied to the next hidden node.

The organizing module ensures that |ec| ≤ ε,∀c ∈ I(n) is
true. Thus Dn ≤ ε and we have the following Lemma. In
addition, the organizing module helps to identify and prune
irrelevant hidden nodes to reduce overfitting in the resulting
2LNN.

Lemma:. For all n, the PLM yields a 2LNN with Dn ≤ ε.

Note that when learning a new (unacquainted) instance, the
PLM results in an acceptable 2LNN via one of the following
two routes:

1) Understanding route by implementing the AGDO of Fig.
1 to yield an acceptable 2LNN.

2) Cramming route by implementing the cramming module
of Table IV to yield an acceptable 2LNN.

III. EXPERIMENT DESIGN

To validate the proposed PLM, we conducted an experiment
on copper price forecasting to determine the following: 1)
whether the understanding and cramming routes are effec-
tive; 2) whether the sequential module and the cramming
module effectively address the vanishing gradient problem;
and 3) whether LTS and the organizing arrangements reduce
overfitting. This study further examines whether the total
PLM training time is reasonable and whether the PLM yields
better forecast accuracy than other tools mentioned in the
literature. Based upon the literature review regarding copper
price forecasting, this study identifies the 18 input variables
and the four-week-ahead-forecast output variables shown in
Table V. Therefore, m = 18.

The dataset includes 471 weekly copper prices of Yangtze
River (YR) nonferrous metals from 2011/10/31 to 2020/12/21.
The average (AVG) and standard deviation (SD) of y are
48,358.75 RMB/ton and 6,183.97 RMB/ton, respectively. In
this study, y is divided by 100,000 and its values fall between
0 and 1. Twenty datasets were generated by randomly picking
282 instances, which comprised approximately 60% of the
dataset of 471 instances, as the training data and the remaining
189 instances were testing data. Therefore, N = 282 and the
learned majority of training data was at most 272 data.

To explore the study objectives, we used four different
versions of the PLM shown in Table VI. LTSN

n indicates
that both the interpretating module and the picking module
follow the LTS principle to yield the n value, which is set
to the count of acceptable instances, and pick the first n
instances, respectively, whereas PON

n denotes that both the
interpretating module and the picking module follow the pre-
ordered principle. Organizing(x) indicates that the organizing
module regularizes weights for at most x epochs. These
versions were implemented with the PyTorch framework and
GPU hardware shown in Table VII.

The ε value for the interpretating, understanding, and or-
ganizing modules is set to 0.04836 (i.e., 10% of the average

TABLE V
INPUT AND OUTPUT VARIABLES.

Variable Description Ref.

xt
1 Weekly crude oil price of New York Mer-

cantile Exchange at time epoch t
[27], [28]

xt
2 Weekly copper spot price of YR nonferrous

metals at epoch t

xt
3 Weekly copper spot price of YR nonferrous

metals at epoch t− 1

xt
4 Weekly copper spot price of YR nonferrous

metals at epoch t− 2

xt
5 Weekly copper spot price of YR nonferrous

metals at epoch t− 3

xt
6 Weekly copper spot price of London Metal

Exchange at epoch t
[27]

xt
7 Weekly gold spot price of FX Broker at

epoch t
[27]

xt
8 Weekly silver spot price of FX Broker at

epoch t
[27]

xt
9 Weekly nickel spot price of London Metal

Exchange at epoch t
[27]

xt
10 Weekly aluminum spot price of London

Metal Exchange at epoch t
[27]

xt
11 Weekly zinc spot price of London Metal

Exchange at epoch t
[27]

xt
12 Weekly iron spot price of London Metal

Exchange at epoch t
[27]

xt
13 US inflation rates at epoch t [27], [29]

xt
14 China inflation rates at epoch t [27], [29]

xt
15 Weekly USD/CLP dollar exchange rate at

epoch t
[27], [30]

xt
16 Weekly USD/PEN dollar exchange rate at

epoch t
[27], [30]

xt
17 Weekly USD/RMB dollar exchange rate at

epoch t
[27], [30]

xt
18 Weekly USD/EURO dollar exchange rate at

epoch t
[27], [30]

yt Weekly copper spot price of YR nonferrous
metals at epoch t+ 4

[31]

TABLE VI
PLM VERSIONS AND SETTINGS.

Version Interpreting module and
picking module

Organizing module

PLM-PO-100 PON
n organizing(100)

PLM-LTS-0 LTSN
n organizing(0)

PLM-LTS-100 LTSN
n organizing(100)

PLM-LTS-500 LTSN
n organizing(500)

TABLE VII
COMPUTATIONAL ENVIRONMENT.

OS Ubuntu 20.0.4.4 LTS
Programming Language Python 3.7.7

Pytorch version 1.11.0
IDE PyCharm, Jupyter Notebook
GPU GeForce RTX 2080
RAM DDR-4 8G*4
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Fig. 5. Number of hidden nodes during learning process of 10th training
dataset.

TABLE VIII
OCCURRENCE FREQUENCIES WITH UNDERSTANDING ROUTE.

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Min 30.41% 10.53% 27.78% 14.29%
Max 77.14% 77.42% 78.57% 100.00%
Avg 58.26% 44.31% 56.91% 57.32%
SD 12.38% 19.67% 13.73% 22.01%

of the normalized y). Thus, when −0.04836 ≤ f (xc,w) −
yc ≤ 0.04836, the cth instance is classified as acceptable;
otherwise, it is unacceptable. The initial learning rates η in
the understanding and organizing modules are set to 1e − 2
and 1e − 3, respectively. Both understanding and organizing
modules have an ε1 value of 1e− 7.

IV. EXPERIMENTAL RESULTS

Fig. 5 shows the evolution of the number of hidden nodes
during the learning process of the 10th training dataset for the
four versions. As expected, cramming was triggered several
times in the early stage of the learning process of PLM-PO-
100. In contrast, in the early stage of the learning process of
PLM-LTS-100 (and other PLM-LTS-xxx versions), the cram-
ming module was not often triggered. Furthermore, compared
with the learning process of PLM-LTS-0 shown in Fig. 5
with those of PLM-LTS-100 and PLM-LTS-500, the non-zero
regularizing epochs reduce the frequency of cramming.

Tables VIII and IX show the occurrence frequencies of the
understanding route and cramming route over twenty training
datasets for the four versions. All non-zero minimal occurrence
frequencies of the cramming route for PLM-PO-100, PLM-
LTS-0, and PLM-LTS-100 shown in Table IX indicate an
unavoidable vanishing gradient problem for the understanding
module. The cramming module is indeed required to address
the vanishing gradient. It is worth noting that a zero-value
minimal occurrence frequency of the cramming route for
PLM-LTS-500 is shown in Table IX.

Table X shows the total number of hidden nodes at the end
of learning over twenty training datasets for the four versions.
Comparing the PLM-PO-100 and PLM-LTS-100 results, we
see that LTS indeed reduces the AVG and SD of the number
of hidden nodes and thus reduces overfitting. Comparing the
PLM-LTS results, we also see that the more regularizing

TABLE IX
OCCURRENCE FREQUENCIES WITH CRAMMING ROUTE.

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Min 22.86% 22.58% 21.43% 0.00%
Max 69.59% 89.47% 72.22% 85.71%
Avg 41.74% 55.70% 43.09% 42.68%
SD 12.38% 19.67% 13.73% 22.01%

TABLE X
HIDDEN NODES AT THE END OF LEARNING.

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Min 16 13 4 1
Max 301 96 66 55
Avg 52.15 44.00 29.65 22.05
SD 60.93 26.92 19.24 15.83

epochs, the better the minimum, maximum, AVG, and SD
of the number of hidden nodes. In other words, regularizing
epochs reduce overfitting.

Table XI shows the number of hidden nodes pruned during
the learning process over twenty training datasets for the four
versions. It seems that for these four versions, the organiz-
ing module indeed works frequently, but does not guarantee
successful pruning over a single learning process since the
minimal number of hidden nodes pruned within the learning
process over twenty training datasets are all zero. In terms of
the average number of hidden nodes pruned over the learning
process, PLM-LTS-500 has the fewest and PLM-PO-100 has
the most.

Table XII shows the training times over twenty training
datasets for the four versions. PLM-LTS-500 has the smallest
average and standard deviation, and PLM-PO-100 has the
largest. Taken together with the results of Tables X and XII, we
observe that the adoption of LTS and the “longer” regularizing
module reduce the average and standard deviation of the
hidden nodes and thus the training time.

Table XIII shows the mean absolute error (MAE) over
twenty datasets for the four versions. Here, the MAE of the

TABLE XI
HIDDEN NODES PRUNED OVER LEARNING PROCESS.

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Min 0 0 0 0
Max 9 4 4 4
Avg 2.10 0.95 0.90 0.79
SD 2.27 1.32 1.33 1.38

TABLE XII
TRAINING TIME (IN SECOND).

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Min 51.58 50.81 13.75 12.50
Max 8619.52 1753.65 1126.95 832.77
Avg 766.15 589.21 430.30 222.55
SD 1862.51 528.63 377.19 247.92
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TABLE XIII
MAE RESULTS.

PLM-PO-100 PLM-LTS-0 PLM-LTS-100 PLM-LTS-500

Training Data (majority)

Min 0.0097 0.0081 0.0097 0.0092
Max 0.0132 0.0156 0.0166 0.0148
Avg 0.0116 0.0119 0.0129 0.0132
SD 0.0011 0.0023 0.0016 0.0014

Training Data (non-majority)

Min 0.0399 0.0572 0.0476 0.0501
Max 0.1379 0.1883 0.1306 0.1389
Avg 0.0501 0.0951 0.0776 0.0739
SD 0.0212 0.0352 0.0211 0.0234

Training Data (Testing data)

Min 0.0155 0.0153 0.0152 0.0144
Max 0.0783 0.0332 0.0225 0.0190
Avg 0.0217 0.0201 0.0185 0.0170
SD 0.0135 0.0043 0.0021 0.0014

Ratio of the average MAE of testing data to that of training data
(majority)

1.870 1.689 1.434 1.288

training data (majority) is calculated for the first 272 training
data sorted by the LTS principle, the MAE of the training
data (non-majority) is calculated for the remaining 10 training
data, and the MAE of the testing data is calculated for the 189
testing data. The last row of Table XIII displays the ratios of
the average MAE of the testing data to the average MAE of the
training data (majority), suggesting that the smaller the ratio,
the less overfitting there is. Table XIII shows that PLM-PO-
100 has the highest ratio and PLM-LTS-500 has the smallest
ratio. LTS and the “longer” regularizing module appear to
reduce overfitting.

The empirical results shown in Tables VIII to XIII indi-
cate that, in terms of reducing the vanishing gradient and
overfitting, the best version is PLM-LTS-500. We further
compared the predictive performance of PLM-LTS-500 with
two popular modeling tools: the linear regression model and
the conventional backpropagation-based 2LNN model.

The experiment was conducted as follows. First, the linear
regression model was used to learn 20 datasets, each of which
had 282 training data and 189 testing data. The obtained
average MAE for the training and testing data were 0.0142 and
0.0140, respectively. Thus, we set the ε value of the learning
goal of both the conventional 2LNN model and the PLM-LTS-
500 model to 0.0282 (i.e., approximately equal to 2∗ average
MAE of the linear regression model). Then, the PLM-LTS-500
model was used to learn the 20 datasets. The final number
of hidden nodes for each dataset was recorded and used to
set the (fixed) number of hidden nodes for the conventional
2LNN model for each dataset, which is termed the 2LNN v
model. The (fixed) number of hidden nodes for the other two
conventional 2LNN models were set to 13 and 23; the initial
weights were set randomly. The number of learning epochs
of the backpropagation learning algorithm used to tune the
weights of the three conventional 2LNN models was 500.

Table XIV shows the MAE results over twenty datasets for

TABLE XIV
MAE RESULTS FOR LINEAR REGRESSION MODEL, 2LNN 13, 2LNN 23,

2LNN V AND PLM-LTS-500.

Linear
Regression 2LNN 13 2LNN 23 2LNN v PLM-

LTS-500

Training Data

Min 0.0134 0.0073 0.0069 0.0073 0.0066
Max 0.0150 0.2056 0.2321 0.2044 0.0090
Avg 0.0142 0.0820 0.0741 0.0974 0.0079
SD 0.0005 0.0645 0.0667 0.0517 0.0008

Testing Data

Min 0.0127 0.0114 0.0107 0.0123 0.0121
Max 0.0155 0.1855 0.2172 0.2181 0.0149
Avg 0.0140 0.0813 0.0744 0.0980 0.0138
SD 0.0008 0.0569 0.0620 0.0509 0.0008

the linear regression model, the conventional 2LNN model
with 13 hidden nodes (2LNN 13), the conventional 2LNN
model with 23 hidden nodes (2LNN 23), the 2LNN v model,
and the PLM-LTS-500 model. Here, for the PLM-LTS-500
model, the training MAE was calculated for the first 272
training data sorted by LTS and the test MAE was calculated
for all 189 testing data. Table XII shows that all MAE results
for PLM-LT-500 were better than those for the conventional
2LNN models. Thus, PLM yields much better learning perfor-
mance than backpropagation learning. Furthermore, all MAE
results for PLM-LT-500 are better than those for the linear
regression model under the condition that the ε value of the
learning goal is approximately equal to twice the average MAE
of the linear regression model. Thus, the proposed PLM-LTS-
500 model yields performance superior to the linear regression
model and the conventional 2LNN model.

V. CONCLUSION

In this study we conduct experiments using a copper price
forecasting dataset to validate and evaluate the proposed PLM.
The experimental results shown in Fig. 5 validate that the
proposed PLM indeed implements the pupil learning proce-
dure of Table I with interpretating, picking, understanding,
cramming, and organizing. For instance, the interpreting LTS
module separates all instances into the acquainted instances
and the unacquainted instances. The picking LTS module
picks unacquainted instances one by one such that easy
(unacquainted) instances are learned first and similar instances
are grouped together. The cramming module enforces memo-
rization when the understanding module cannot learn a picked
unacquainted instance. The organizing module comprehends
all learned instances for a concise knowledge system. The
empirical results show that these modules constitute sequential
learning, adaptive learning, perfect learning, and less-overfitted
learning. The empirical results also verify the effectiveness of
the proposed PLM in handling both vanishing gradients and
overfitting.

The empirical results of the second experiment also attest
the superiority of the PLM model over the linear regression
model and the conventional backpropagation-based 2LNN
model. The empirical results indicate that the learning process
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resulting from the PLM varies based on the hyperparameter
arrangements of all modules. One future work is to identify the
best hyperparameters for all modules for specific applications
when the PLM is adopted.
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